Zeto's wireless EEG machine

ZETO – ERP EVENT MARKER INTEGRATION

Event Related Potentials (ERPs) in EEG provide insight into how our brain processes information, reacts to its environment and adapts to challenges. ERPs differ from the traditional clinical tradition of evaluating continuous spontaneous brainwaves in patients. With ERPs, experimenters can examine the brain’s response to succinct events. For a summary on ERPs, see here.

One of the most crucial aspects in capturing clean ERPs is knowing precisely when specific target events occur. So-called event markers are commonly used to timestamp the onset of target events in the continuous EEG tracings to enable further data processing. The target events can have different modalities and can either be initiated or perceived from the person receiving the EEG.

For example, participant initiated movements are known to elicit robust ERPs.1 2 However, more commonly, ERPs are recorded from participants perceiving sounds, language, images, or smells.3,4,5 In principle, ERPs will emerge via subsequent processing as long as experimenters established a reliable method to repeatedly mark the onset of such events in the EEG.

There are two technical aspects that determine the quality of ERP event markers:

  • Delay: Time from when an event occurred to when it is marked in the EEG data
  • Jitter: Consistency of the delay with which the event is marked in the EEG data

Long delays with large jitter complicate EEG analysis up to the point in which the targeted ERP component becomes unobtainable or requires too many trial repetitions to appear. Short delays with minimal jitter create the ideal technical conditions to obtain ERPs with a minimally possible amount of trial repetitions.

With Zeto’s event marker integration, users benefit from accurate event marker timing and distributed cloud data access and management – see Figure 1.

Figure 1. Schematic diagram of Zeto’s local event marker integration and remote data streaming and management features. Event markers from the presentation computer timing are merged with the EEG data locally via the Zeto Interface Box 2 (ZIB2) and then passed on to the Zeto Cloud.  A simultaneous LSL integration and related multi-model data recording become possible out of the box while maintaining Zeto’s existing cloud streaming, data, and user management features.

ZETO ERP FEATURES

The Zeto EEG platform offers the ability to integrate external markers wirelessly at an 8-bit resolution within a 2 ms delay and less than 1 ms technical jitter. In other words, the user can distinguish between 255 unique event markers that they can repeat as closely as 4 ms from one another. With these features, Zeto EEG is equipped to reveal accurate auditory, visual, and senso-motoric ERPs across a wide range of applications.

Event markers are collected by the system via an 8-bit DB9 connector built into the Zeto Interface Box Version 2 (ZIB2) using Transistor-Transistor-Logic (TTL) signals.6 The ZIB2 acts as a data access point for the wireless Zeto WR19 headset. Synchronization between the ZIB2 and Zeto WR19 is handled at a nano-second range, eliminating both the delay and jitter introduced by the wireless data transmission. Incoming event markers are retroactively aligned with the data point at the time of collection.

Users can extract the event marker data from the Zeto system in multiple ways:

1) EDF+ File
Zeto users can export finished EEG recordings in various ways but the most popular is the EDF+ file format that is readable by most common EEG analysis tools. Event markers appear in the EDF+ file as digital I/O channels synchronized with the EEG data. Some EDF readers will also display the embedded event markers in the viewer.

2) Visualization
In the Zeto cloud software, users can visualize the TTL event marker inputs along with the EEG by selecting the “ALL” montage in the montage menu. This view is particularly useful for troubleshooting when setting up the ERP experiment. Offline or in real-time the user will see incoming event marker codes visualized high or low values in separate channels. The event marker channels are simultaneously translated into event marker labels that co-appear at the bottom of the screen (Figure 2).

Figure 2. Close-Up of the “All” Display montage: Output (“A”) or Input (“B”) event marker channels for 8 bits each, translated into up to 8-bit (255) unique event marker labels. The event marker mapping can be freely configured and labeled as desired prior to the recording. In this example, eight input event marker signals are embedded in the data file (pins 1 to 8) and show up as square waves (“C”).  Each input event marker channel is mapped to an annotation, labeled “One” through “Eight” respectively at the bottom of the data screen.

3) Real-time lab streaming layer (LSL) Export
Eight digital input and output channels each are made available via lab streaming layer (LSL) API in real-time, enabling the user to note the stimulus onset directly in the data stream. Event makers and EEG are synchronized and merged prior to providing this data to the LSL streaming socket. As a result, event timing and EEG data remain perfectly synchronized even if there are LSL related streaming delays. Additional LSL API synchronization features remain available to users for additional real-time data integration.

4) Offline Event Marker Files
Users have the option to export marker files after the recording is completed. That marker file contains precise marker timing and label information for all event markers recorded for easy processing in third party analysis tools such as MATLAB, ERPLAB, Python or others. This allows for separate analysis of event data and EEG data found in the exported EDF+ file.

The event file can be exported in “.csv” format (Figure 3), or a comma-delimited format called “.zmrk”. Both are compatible with most common EEG processing tools currently available for research. 

Figure 3. Event Markers listed in .csv format.

ZETO EVENT MARKER TIMING VALIDATION

Zeto validated the event marker timing to establish the delay and jitter attributes under working conditions.
To do this, a testing setup split the incoming TTL trigger voltages via an analog splitter into two exact 8-channel copies. One copy of the event marker signals got connected to the ZIB2 input trigger ports while the second copy got connected to 8 channels of the WR19 headset. As a result, incoming event markers both appeared as digital events in the datastream and voltage changes in the EEG channels (Figure 4). Subsequent processing revealed the real-life delay and jitter between the incoming event marker signals and the EEG recording.

Figure 4. Schematic of the event marker timing test setup. The presentation computer sends 8-bit TTL event markers to an analog splitter box. One copy of the TTL signals arrives at the ZIB2 and gets converted into event labels. The other copy arrives at the headset and feeds into 8 of the EEG channels to show up as signals in the EEG data file.

Using this approach, event marker timing was established as stable, at < 2 ms delay and <1 ms jitter, which is a good basis to reliably capture ERP signals in EEG.

ZETO’S STIMULATION AND SYNCHRONIZATION PLATFORM PARTNERS

It is important to note that the Zeto system provides extremely precise synchronization on the receiving end of the event marker only. In fact, a much more likely source of both delay and jitter in ERP experiments occurs during stimulus presentation and subsequent event marker generation.

To avoid timing complications that occur prior to event markers entering the Zeto system, Zeto has partnered with two stimulus and synchronization platforms – both tested with our products.  These stimulus presentation and synchronization products are designed to eliminate delay and jitter on the event marker onset. In addition, they offer a variety of additional functions, including experiment writing and presentation software, participant response boxes, and photodiodes. 

Both partners have implemented out-of-the-box integrations for Zeto and are ready to service Zeto customers.

Cedrus, Inc. Psychology Software Tools
Cedrus devices are designed for precise, jitter-free event marking and fit a variety of budgets. SuperLab is an experiment writing application, while software support for their hardware interfaces also includes Matlab, E-Prime, Python, C++, etc. Psychology Software Tools isa prominent software and hardware company that helps researchers address challenges in human behavioral studies. PST are creators of E-Prime, a market-leading experiment writing platform.
C-POD
Sent precise event markers via USB
Chronos
Hardware synchronization and delivery system for millisecond-accurate event markers to external devices using various I/O port options.
M-POD
Sent precise event markers, plus incorporate a response pad and photodiode
E-Prime
Experiment writing platform that integrates stimulus presentation and behavioral software with research equipment
StimTracker Duo
Comprehensive audio/visual/response synchronization platform
SuperLab
Easy to use experiment writing software that does not require programming

References

  1. Hai Li et al. (2018). “Combining Movement-Related Cortical Potentials and Event-Related Desynchronization to Study Movement Preparation and Execution.” Frontiers in Neurology.
    https://www.frontiersin.org/articles/10.3389/fneur.2018.00822/full
  2. Fedor Jagla, Vladislav Zikmund, in Studies in Visual Information Processing (1994). “Visual and Oculomotor Functions.” ScienceDirect.
    https://www.sciencedirect.com/topics/neuroscience/movement-related-potential
  3. Sean McWeeny, Elizabeth S. Norton. “Understanding Event-Related Potentials (ERPs) in Clinical and Basic Language and Communication Disorders Research: A Tutorial.” PMC.
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3016705/
  4. Shravani Sur, V. K. Sinha (2009). “Event-related potential: An overview.” PMC.
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3016705/
  5. Thomas Hörberg et al. (2020). “Olfactory Influences on Visual Categorization: Behavioral and ERP Evidence.” Cerebral Cortex.
    https://academic.oup.com/cercor/article/30/7/4220/5811850
  6. Fiorenzo Artoni et al. (2017). “Effective Synchronization of EEG and EMG for Mobile Brain/Body Imaging in Clinical Settings.” PMC.
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770891/

Zeto Introduces New Features for Clinical Research Applications to Address the Growing Need for Rapid Brain Monitoring in Health Sciences

SANTA CLARA, Calif., – May 18, 2023

Zeto, Inc., an innovative EEG brain monitoring company, announced its participation in the upcoming Vision Sciences Society (VSS) annual meeting in St. Pete Beach, Florida, from May 19th to 24th.

The Vision Sciences Society (VSS) Annual Meeting is a premier gathering that covers the broad scope of vision science. The meeting brings together experts from various disciplines, including visual psychophysics, visual neuroscience, computational vision, and visual cognition. As part of this event, Zeto, Inc. will showcase its latest product features tailored for EEG in clinical research applications.

Originally developed for the rapid acquisition of clinical EEGs in hospitals and clinical practices, Zeto is responding to an increasing number of requests from researchers and clinical research organizations (CROs) who share a common need for high-quality EEGs recorded more efficiently compared to traditional technologies.

The research features introduced by Zeto include the ability to record timing-precise event- related potentials (ERPs) through their unified cloud platform. Users can now benefit from the ease and security of Zeto’s cloud interface yet maintaining sub-millisecond precision on input and output event markers which are crucial for high-end ERP data acquisition. This cloud platform is particularly relevant for CROs and large-scale multi-site research projects, providing a central place for data access and management.

With advanced API features, state-of-the-art encryption and user management, researchers can conveniently interact with EEG and synchronized video data using commonly available scripting languages such as Python®, MATLAB®, or most other programming languages. This significantly speeds up the ability to process large multi-site datasets and fosters collaboration and synergies among multi-center stakeholders.

“Zeto has been providing tremendous value for our clinical customers in hospitals and private practices, but we are particularly excited to now offer the convenience of Zeto EEG to CROs and cutting-edge researchers,” says Florian Strelzyk, Chief Sales Officer at Zeto. “The ease of use, comfort, and refined feel of our products will open up a wide range of new opportunities to bring EEG out of the lab and into research environments that are closely related to the topics they study. Imagine the possibilities ahead with a platform that is quick to apply and easy to work with. Successful research frequently relies on large teams extracting clinical findings efficiently and Zeto can provide this multi-user experience like no other tool currently available.”

About Zeto

Zeto, Inc., is an award-winning, privately held medical technology company located in Santa Clara, CA focused on transforming the way electroencephalography is done in clinical and research settings. Zeto’s revolutionary FDA-cleared EEG platform brings the traditional EEG procedure to the 21st century by offering the WR19, a zero-prep, wireless, easy-to-wear headset with active, dry electrodes that can be positioned as per the 10-20 system.
The Zeto headset is backed by a cloud data and software platform, a real-time LSL-based API, and a TTL-based trigger device for ERP studies.
The company plans to leverage its platform technology to improve access and quality to medical EEG testing and to enable and improve adjacent biomedical research and clinical trials.

To learn more about Zeto’s products, including the remote EEG monitoring, please visit: https://zeto-inc.com or email us at research@zetoinc.com

Source – Newswire 

Zeto’s Reliable EEG Headset: Built to Withstand the Daily Grind

As a healthcare professional, you know how important it is to have reliable equipment that can withstand the daily grind of a busy medical practice. That’s why we designed Zeto EEG – a rugged, clinical-grade headset that is built to last.

Zeto’s durable EEG headset is made from high-quality, clinical-grade materials that are easy to clean and maintain. It has a light but substantial feel, making it comfortable to wear for extended periods of time. But don’t let its light weight fool you – Zeto’s resistant EEG headset is tough enough to handle collecting EEG data in even the most demanding clinical environments.

To back up our commitment to quality, we offer up to 4 years hardware warranty that covers intended use. Customers have the choice to purchase this warranty at once upfront or extend it annually. This means that you can use Zeto with confidence, knowing that it is built to last. Excluded from that warranty is unintended use such as submerging or washing, sitting on, tearing, or intentionally over-bending the headset.

Our standard Service Level Agreements (SLAs) provide 72 hours replacement assurance. For those who need even faster replacement, our premium SLAs assure that a replacement headset can be with you within 24 hours during weekdays as long as we receive your request by 2 p.m. (ET).

In conclusion, if you’re looking for a quick-to-apply dry EEG system that is built to withstand the rigors of daily clinical use, look no further than Zeto.

Curious about how well our Zeto’s reliable EEG headset can withstand the daily wear and tear of a clinical setting? We put our product to the test with a drop test, simulating the accidental drops and impacts that can occur during everyday use. Watch the video to see just how rugged and durable Zeto truly is:

Don’t Sweat It: Managing Sweating Artifact During EEG Recordings

Sweat artifacts are a common problem in electroencephalography (EEG) recordings. They can noticeably affect the quality of the recorded tracings and make it difficult to read the underlying EEG signals. Sweat artifacts in EEGs occur when the body’s biological sweat response alters the conductivity of the skin in a way that affects the electric signals picked up by the electrodes. Such changes not only occur when sweat is visible on the scalp but also occur when the body heats up and prepares to sweat.

In this blog, we will explore the causes of EEG sweat artifacts, their effects on EEG recordings, and strategies for mitigating their impact.

What Causes Sweating

Sweat is crucial for human thermoregulation and can be caused by a variety of factors, including anxiety, nervousness, or physical exertion. Biological changes during menopause also increase the chance of sweating. Regardless of these and other factors, a warm testing environment is the main driver of sweating.1 Systematic studies revealed that temperatures above 79°F (~26°C) can have a noticeable effect on the EEG and signal morphology.2

The Biology of Sweat Artifacts in EEG

Sweating is not simply the appearance of sweat on the skin but the result of a cascade of biological changes that lead to the skin’s ability to secrete liquid from the sweat glands, onto the skin (Figure 1).

The filling of the sweat glands with liquid in preparation of sweat excretion increases the electrical conductivity of the skin rapidly which affects the morphology of the EEG signals. These rapid changes in skin conductivity and the uneven distribution of the sweat glands across the skin result in recordings prone to major EEG artifacts, with single channels showing large signal changes at different times and locations.3

Figure 1. Cross section of epidermis and dermis skin layers with embedded hair follicle, eccrine, and apocrine sweat glands. Source: Mayo Clinic

The Physics of Sweat Potentials in EEG

In addition to biological changes in the skin’s conductivity, the composition of the sweat itself is contributing to electrical potentials that EEG amplifiers pick up. Sweat contains high sodium chloride and lactic acid which react with metallic components of the EEG electrodes, generating electrical potentials.4 These electrical potentials combine with skin and sweat gland potentials into what is visible in the EEG as sweat artifacts.

Appearance of Sweat Artifacts in EEG

Sweat artifacts in EEG can appear in various morphologies or shapes that are affected by biological factors such as the severity and generality of the sweat response. The sudden onset of sweating across the entire body will appear different from sweating that occurs over time or may be more limited by body part or region. More relevant for the appearance in EEG though, are the analog or digital filter settings of the recording.

Amplifiers with a built-in low-frequency hardware filter will show a more subdued sweat artifact even without any digital filtering. True direct current (DC) amplifiers that do not have any analog low-cut-off filter will show the build-up to a sweat artifact in their raw data much more because small changes over time can be picked up much better.

Most clinical EEGs are viewed at a 1 Hz–70Hz bandpass filter as recommended by ACNS.5 EEG Sweat artifacts viewed using a 1 Hz low-cut-off filter generally show up as slow wave components around a 1 Hz–3 Hz frequency in otherwise normal background activity; for an example, see Figure 2. Disabling the low-cut-off filters, however, exposes additional low-frequency drifts related to sweat that are otherwise masked by digital signal processing; for an example, see Figure 3.

Figure 2. Filtered sweat artifact in a full 19-channel clinical EEG viewed in a referential montage. 1 Hz low-frequency forward Butterworth filter applied. The slow meandering signal drifts almost completely disappears after filtering (red frame).

Sharper signal drifts remain visible even after filtering (blue frame). For most clinical recordings, EEG tracings such as this are indicators of the biological changes that are caused by a sweat response. Data was recorded using Zeto’s WR19 headset at 79°F (~26°C).

Figure 3. Unfiltered sweat artifact during the same data segment, as presented in Figure 2. Slow meandering (red frame) and at times sharper signal drifts (blue frame) reflect the biological changes in the skin’s conductivity due to sweating.

How to Get Rid of Sweat Artifacts in EEG

There are two common ways to reduce or avoid sweat artifacts in EEG recordings.

  1. EEG operators can reduce the biologically triggered changes that lead to sweating. In preparation for the EEG recording, operators can ask patients to avoid strenuous exercise, caffeine, and alcohol prior to a scheduled EEG session, ideally 24 hours before the test. During EEG recordings, Kappenman and Luck recommend maintaining a cool temperature in the recording environment to minimize the occurrence of EEG sweat artifacts. They recommend a comfortable temperature of 68°F –72°F (20°C –22°C) and using fans or air conditioning to prevent humidity buildup.2
  2. During the EEG session, EEG operators should assure the best possible electrode contact with the scalp to reduce skin impedance under the electrode. In traditional amplifier systems with wired electrodes, this can be achieved via additional skin preparation and abrasion. With active quick-apply EEG recording systems, such as Zeto’s headset, operators can assure proper electrode landing with each conductive leg touching the scalp.

Bottom Line – Recommendations

In hectic clinical day-to-day EEG schedules, the easiest way to avoid sweat artifacts in most patients is to avoid sweating in the first place. For that reason, option #1, mentioned previously (reducing sweating), is the most robust way to assure consistent EEG data quality.

  • Keep the EEG room temperature at 68°F – 72°F (20°C–22°C), especially when recording unconscious patients who cannot communicate their comfort levels; keeping an optimal temperature reduces the body’s need for sweating.
  • Use fans or air conditioning to accommodate individual patient’s temperature requests. Each patient is different; ask to make sure they are not hot.
  • If EEG sweat artifacts are detected, consider pausing the study to cool down the room (i.e., opening the door, reducing the room temperature, and/or the use of a fan).
  • Relaxation techniques: Encouraging the patient to relax and breathe deeply. This can help to reduce sweat caused by anxiety or nervousness.

By implementing these strategies, EEG operators can help minimize sweat artifacts in EEGs and obtain cleaner results. It is important to work closely with the patient and monitor the EEG tracings for any signs of EEG sweat artifacts during the test to more adequately address issues with data quality.

References

  1. Baker, L. B. (2019). Physiology of sweat gland function: The roles of sweating and sweat composition in human health.
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773238/

  2. Kappenman, E. S., & Luck S. J. (2010). The effects of electrode impedance on data quality and statistical significance in ERP recordings.
    https://static1.squarespace.com/static/5abefa62d274cb16de90e935/t/5ac6962a8a922d0b8b8be6a1/1522964012664/Kappenman+2010+Psychophys+Impedance.pdf

  3. Kalevo, L., Miettinen, T., Leino, A., Kainulainen, S., Korkalainen, H., Myllymaa, K., … & Myllymaa, S. (2020). Effect of sweating on electrode-skin contact impedances and artifacts in EEG recordings with various screen-printed Ag/Agcl electrodes.
    https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9017959

  4. Siddiqui, F., Osuna, E., Walters, A., Chokroverty, S. (2006). Sweat artifact and respiratory artifact occurring simultaneously in polysomnogram.
    https://pubmed.ncbi.nlm.nih.gov/16461004/

  5. ACNS – American Clinical Neurophysiology Society Guidelines and Consensus Statements.
    Guidelines and Consensus Statements | ACNS – American Clinical Neurophysiology Society

Greenwood Leflore Hospital Elevates Patient Care with Advanced EEG Solutions

Greenwood, Mississippi, February 15, 2023 –

Greenwood Leflore Hospital in Greenwood, MS has recently upgraded its EEG capabilities with the implementation of a modern solution. The hospital, which has always prioritized offering in-house EEG tests for its patients, has adopted a technology that allows for a faster and more efficient EEG experience.

Patients can now benefit from a shorter setup time and a more convenient testing process, without the need for skin prep or gel. The new technology has received positive feedback from patients, who appreciate the faster scheduling, the lack of need for post-test hair washing and simplified testing process.

“The new EEG solution has been a valuable addition to our hospital,” says Steven Robinson, Director of Cardiopulmonary Care at Greenwood Leflore Hospital. “It offers a more efficient and patient-friendly approach to EEGs, while also providing high-quality results.”

“We are proud to support the improvements to patient care at Greenwood Leflore Hospital through the implementation of our EEG solution,” says Florian Strelzyk, Chief Sales Officer at Zeto, Inc. “Providing on-site testing is a crucial aspect of quality patient care and we are pleased to be able to contribute to this.”

The hospital’s ability to perform routine and urgent EEGs at a moment’s notice has also been improved, allowing for better patient care and a more streamlined experience. The EEG headset simplifies the testing process for both patients and healthcare providers.

In conclusion, Greenwood Leflore Hospital’s upgrade to its EEG capabilities has made EEG testing a quick and comfortable experience for patients, further enhancing the hospital’s commitment to providing top-notch care.

About Greenwood Leflore hospital:
Greenwood Leflore Hospital is a publicly-owned healthcare organization. The Hospital was established in 1906 by the King’s Daughters’ Society with the help of the City of Greenwood and Leflore County.
Website
http://www.glh.org

Source:
https://www.einpresswire.com/article/617160083/greenwood-leflore-hospital-elevates-patient-care-with-advanced-eeg-solutions

EEG Brain Monitoring Market Grows with Increased Demand for User-Friendly Products

Zeto’s CEO, Aswin Gunasekar, recently sat down with Scott Pantel from LSI – Life Science Intelligence™ to discuss the future of brain monitoring and how Zeto is addressing unmet needs in neurology. Aswin highlighted Zeto’s work in transforming clinical EEG for patients around the world.

Key points from the interview include:

About EEG market

The screening/routine EEG market in the US is quite large, with an estimated 5-6 million procedures performed annually in the office EEG space alone. The market for Epilepsy Monitoring Units (EMU) is also significant, and there is also a separate market for sleep disorder EEGs. Overall, the EEG brain monitoring market is large and growing, as it is being used for a wider range of neurological conditions, and the demand for products that make EEG acquisition and interpretation easier is increasing.

About Zeto ecosystem

We are building a comprehensive ecosystem that includes not just hardware but also cloud-based software capable of handling thousands of simultaneous uploads and downloads globally. Additionally, we envision opening our infrastructure to other experts in the field to develop specialized applications for conditions such as stroke rehabilitation, autism, and Alzheimer’s detection. This also allows us to integrate other EEG service provider applications for the existing market. This ecosystem was built from scratch with a long-term vision in mind, and it has proven to be successful for us.

Regarding the potential for a future partnership with a major technology company

We collect a lot of brainwave data, which is time-based and contains a lot of valuable information. This data can be anonymized and used for machine learning and AI. Tech companies like IBM, Verly, or Qualcomm are interested in this type of data and may be interested in acquiring a company like ours to extract value from our large patient database across various indications. It’s a long shot, but the potential is there.

Aswin will also be a speaker at the LSI USA ’23 Emerging Medtech Summit in March 2023.

Bringing EEG to Rural Areas with Remote EEG Monitoring

The profound lack of access to EEG outside of urban academic centers is a substantial health disparity. Most rural and suburban hospitals do not have the EEG equipment or trained staff available to obtain and read EEG studies. Thus, they must transfer patients who need EEG monitoring to a medical center that can provide these diagnostic services. 

These transfers delay diagnosis and treatment, burden patients and families, and increase healthcare costs and lengths of stay. 

As this article will show, even the smallest rural hospitals can provide their patients with high-quality, cost-effective, sustainable EEG using modern technologies and remote services.

Lack of Staff is an Insurmountable Barrier to EEG Access in Rural Areas

In a lecture presented at the ASET 2022 Annual Conference, Dr. Suzette LaRoche highlighted the disparities in access to neurodiagnostic technology faced by patients in rural areas. As per Dr. LaRoche’s insights, it is no secret that neurologists tend to practice in urban areas. More specifically, they cluster in large academic medical centers. A small community hospital in a rural area likely doesn’t have a neurologist or an EEG technologist on staff. The hospital may not even have EEG equipment. Consequently, every patient who needs EEG either doesn’t get this critical study or must be transferred to another hospital. Medium-sized hospitals may have a general neurologist on staff, but a dearth of techs. Moreover, even if the hospital employs neurologists and EEG techs, they are usually only available from 9 to 5, Monday through Friday. Even large community hospitals with neurologists and perhaps even epileptologists struggle with EEG tech coverage. Hiring more neurologists and EEG techs is not the answer—they are simply not enough of them who choose to work in rural and exurban areas.

Overcoming Barriers to Rural EEG

Dr. LaRoche identifies the following factors as the main obstacles to EEG testing in rural areas:

  • No trained technician is available on site to perform the EEG study
  • No one to read or interpret the EEG study (i.e., no neurologists or epileptologists)
  • No EEG equipment 

If you cannot get neurologists and EEG techs to work in rural areas, how do you adequately care for patients? The solution is to change the way we obtain and read EEGs:

  • Use rapid EEG devices that can be correctly placed by any medical staff member in minutes
  • Record EEG studies to the cloud so that they can be read remotely by board-certified neurologists
  • Use an EEG system that integrates video with EEG recording for remote review
  • Use remote EEG and cEEG monitoring and remote EEG reading services

As remote medicine continues to become commonplace, we expect to see a rise in remote EEG monitoring companies, and expanded opportunities for remote EEG techs. 

Zeto Brings EEG to Rural Hospitals

Zeto EEG is a wireless, adjustable EEG headset with integrated dry electrodes. Zeto offers a rapid full montage EEG solution and might be used for cEEG for up to 4 hours and for routine EEG.  

If an EEG technologist is not available, any medical staff can correctly place the EEG headset in minutes (the average setup time is 5 minutes) with minimal training. It’s possible to use cross-trained personnel such as a nurse, medical assistant, or respiratory specialist. The Zeto team trains onsite and offers remote support.   

The Zeto headset wirelessly sends EEG recordings to the cloud so the data can be monitored in real-time by anyone who has access to the HIPAA-compliant cloud platform. In situations where in-house registered EEG technologists are unavailable, Zeto is partnering with accredited EEG remote monitoring services that provide live remote video monitoring at an hourly flat rate. 

Even a family medicine physician who is the closest doctor to the patient can carry out an EEG test using Zeto’s remote video monitoring service after being trained by Zeto,

If the rural hospital has a neurologist on staff, that professional can review the EEG from a medical office or from home. If a neurologist is not available, Zeto offers an EEG reading service staffed by board-certified neurologists. 

Also, Zeto has recently implemented FDA-cleared seizure detection software, a robust tool that provides automatic pattern notification to detect critical events and notify medical staff and neurologists.

Zeto can bring cost-effective remote EEG services to any size hospital even if there are no EEG technologists or neurologists on staff. Indeed, Zeto’s rapid full-montage EEG headset could eliminate a major health disparity that currently plagues rural hospitals. 

Source: The blog is inspired by a lecture by Suzette LaRoche, M.D., FACNS, FAAN
“Disparities in Access to Neurodiagnostic Technology” presented at the ASET 2022 Annual Conference

Billing for Zeto: Zeto EEG Billing CPT Codes

It is important to use the appropriate CPT codes when seeking reimbursement by payers for covered outpatient procedures, including routine and long-term EEG studies.  This article aims to provide guidance on potentially applicable CPT procedure codes for EEG while using Zeto EEG. The details we provide here are informational only, and you should consult your own billing advisors for what is required by your payors. Following this guidance is not a guarantee of coverage or reimbursement.

A graphic depiction of an EEG

Billing for Routine EEG

For many reasons, a routine EEG is the most commonly performed EEG study.  Choosing the correct CPT Code for routine EEG depends on two factors: how long the EEG is recorded and the patient’s state of consciousness. The EEG billing codes for the applicable time-period are set forth in Table 1. 

While procedures with a length of 20-40 minutes require a different code depending on the patient’s level of consciousness, there is a single code for EEGs lasting 41 to 60 minutes, and another single EEG billing CPT code for EEGs lasting greater than 60 minutes, but not in excess of 2 hours. The codes for the longer sessions apply whether the patient is awake, drowsy, asleep, or comatose.

The CPT Code for a 41 to 60-minute routine EEG is 95813 and the code for a routine EEG more than 60 minutes in duration is 95812 (Table 1).

Table 1. CPT Codes for Routine EEG

EEG LengthClinical StatusCPT Code
Awake and drowsy95816
20-40 minutesAwake and asleep95819
Coma or asleep95822
41-60 minutesAwake, drowsy, asleep, or in a coma95812
>60 minutesAwake, drowsy, asleep, or in a coma95813

Other EEG Billing Codes Applicable to Zeto EEG > 2 Hour Recordings

EEG recordings that last longer than 2 hours (“long-term EEG studies”) have their own set of CPT codes.  EEGs greater than 2 hours, but less than 12 hours, are billed using the CPT Codes listed in Table 2.  Additional CPT codes for EEGs greater than 12 hours are also available but are less applicable for Zeto’s current use case and we have not included them here.

The fact that these EEG billing codes are predicated on the time that the procedure takes makes it imperative that the clinician properly documents the reasons that the particular duration is medically necessary.

Another variable that affects the selection of the correct code for billing the professional component of a  long-term EEG monitoring study is whether the EEG is video-recorded. Two EEG “professional component” CPT Codes are available for studies lasting 2 to 12 hours:  95717 is the CPT Code without video, and 95718 is the code with video.

There are also technical component CPT Codes for long-term EEG studies. The CPT Codes for long-term EEG technical components vary based on whether they are unmonitored, monitored intermittently, or monitored continuously.

Importantly, Zeto’s functionality enables providers to render remote EEG reading services and intermittently and continuously monitored EEGs that can be used to render the professional services associated with the EEG billing CPT Codes listed in Table 2. Also, Zeto offers several options to record synchronized video EEG, integrating up to four video streams.

Table 2. CPT Codes for Long-Term EEG from 2 to 12 hours

VideoMonitoring*CPT Code Technical ComponentCPT Code Professional Component **
Unmonitored95705
Without VideoIntermittent9570695717
Continuous95707
Unmonitored95711
With VideoIntermittent9571295718
Continuous95713
* Zeto EEG enables providers to schedule intermittent or continuous EEG monitoring services via third party monitoring providers
** Zeto enables providers to obtain professional EEG reads via third party reading service providers

For individualized guidance on EEG billing, several third-party consulting service providers are active in the market – for questions or an introduction to a consultant familiar with Zeto, complete the form below.

Zeto Implements Encevis’ Seizure Detection and Trending Algorithms

The only zero-prep, full-montage, rapid EEG solution for clinical use now offers near real-time notification of ongoing seizures by using reliable FDA cleared seizure detection software

Santa Clara, California, December 1, 2022 –

Zeto, Inc., an innovative EEG brain monitoring company, announced today the integration of FDA cleared seizure detection and trending algorithms developed by encevis, now available as part of the Zeto EEG platform. Encevis is powered by the AIT Austrian Institute of Technology, a renowned research and technology organization in Europe, and their EEG analysis software is widely utilized and peer reviewed by physicians across the world.

These new tools will help Zeto’s customers speed up EEG reviews. The trending module graphically reports several hours of EEG into a simple display to allow rapid assessment of brain states. The seizure detection component offers high sensitivity with low false alarm rates, matching and in parts surpassing industry benchmarks. Proven by three independent clinical publications, and harvesting the power of AI and deep learning, the software provides a detailed overview of seizures and suspicious EEG activity.

“According to current studies, 18% of critically ill patients with serious brain diseases suffer from unrecognized non-convulsive epileptic seizures, frequently leading to neurological disabilities. The joint efforts of Zeto and encevis will make EEG faster to read by automatically detecting and orienting the reader to abnormalities. Seizures will be automatically detected and marked in the EEG for review. Near real-time detection notifies medical staff about patients with ongoing clinical seizures,” said Dr. Tilmann Kluge, head of Medical Signal Analysis of AIT.

“We are excited to integrate encevis’ seizure detection and trending tools into our platform. Collaborative projects such as this ensure a seamless user experience and enable healthcare providers to offer the best care to their patients at an affordable price,” said Florian Strelzyk, Chief Sales Officer at Zeto.

Zeto EEG analysis features will continue to evolve as more third party integrations become available. Zeto is committed to driving innovation in brain monitoring by opening its platform to strategic projects and partnerships that empower health care providers to diagnose their patients rapidly and more effectively. 

Encevis’ Seizure Detection & Trending Algorithms

About Zeto

Zeto, Inc. is an award-winning, privately held medical technology company located in Santa Clara, California, that is focused on transforming the way electroencephalography (EEG) is performed at hospitals and clinics. Zeto’s revolutionary FDA-cleared EEG headset and cloud platform bring the traditional EEG procedure to the 21st century.

To learn more about Zeto’s products, including the remote EEG monitoring, please visit: https://zeto-inc.com/ or email us at info@zetoinc.com.

About encevis

encevis is a part of the AIT Austrian Institute of Technology, Austria’s largest non-university research institute, is among the European research institutes a specialist in the key infrastructure issues of the future.

Learn more: https://www.encevis.com/

EEG in the ICU: Why, When, and How

Introduction

EEGs are an invaluable tool for monitoring real-time brain function at the bedside in the ICU.

Nonconvulsive seizures and nonconvulsive status epilepticus in the ICU are very shockingly common. Now that continuous EEG monitoring (cEEG) has entered clinical practice, we know the incidence of nonconvulsive seizures is between 8% and 37% of ICU patients.1 Up to 22% of patients in the medical ICU without brain injury have periodic discharges or seizures.2 Up to 16% of patients in the surgical ICU have seizures.3

Nonconvulsive seizures and nonconvulsive status epilepticus are extremely hard to detect at the ICU bedside—physicians missed 88% of these cases in one retrospective study.4 Sadly, delays in diagnosing and treating nonconvulsive status epilepticus treatment are associated with poor patient outcomes.5,6 Because of this dire need, professional societies and experts are calling on ICU staff to routinely order EEG monitoring in critical care units.7-9

A graphic depiction of an EEG

Why order EEG in the ICU?

Seizures and/or status epilepticus causes neuronal damage10 and in some cases, hippocampal atrophy.11 These treatable conditions lead to poor outcomes in both children and adults. Prolonged seizures are associated with chronic cognitive problems and neurological sequelae . In short, undiagnosed and untreated seizures are dangerous for patients.

Making matters worse, seizures are often missed in the ICU setting when the diagnosis is based on clinical signs alone.4 Indeed, as Dr. Lawrence J. Hirsch of the Comprehensive Epilepsy Center of Columbia University in New York put it, “it is fair to say that anyone who works with critically ill neurologic patients and does not see nonconvulsive seizures and nonconvulsive status epilepticus on a regular basis is missing the diagnosis.”12

Given the complex nature of patients’ deficits in the ICU, it is unreasonable to rely on physical/neurological examination alone to detect nonconvulsive seizures.

EEG monitoring does appear to be better able to detect both subclinical seizures and subclinical status epilepticus compared to routine EEG according to a systematic review and meta-analysis study of over 20,000 critically ill adult patients.13 

However, this might not translate into long-term clinical benefit, as suggested by a recent multicenter randomized clinical trial in Switzerland called the CERTA study, which evaluated 364 patients using continuous EEG or two routine 20-minute EEGs.  The researchers did not find that mortality significantly differed between the two groups at 6 months. 

Nevertheless, Neurocritical Care Society guidelines recommend the institution of continuous EEG within an hour of suspecting status epilepticus in all patients.14 Availability of EEG technologists, who can set up a routine and continuous EEGs, play a vital role in enabling ICU EEG monitoring, yet only 26% of institutions have technologists accessible 24/7 in-house.15

According to a study of 625 critically ill patients, preliminary findings from the first minutes of EEG recording have a high predictive value in detecting patients at greater risk for seizures and who would benefit from long-term monitoring.16 The absence of epileptiform discharges after two hours of EEG recording reduced the probability of seizure occurrence to less than 5%, and less than 10% after only 15 minutes.

When to order EEG in the ICU

EEG should be ordered without delay for any ICU patient with suspected nonconvulsive seizures. As mentioned, however, clinical suspicion is not terribly reliable4, thus the bar for ordering cEEG in ICU patients should be very low.

Continuous EEG should be ordered in ICU patients with7,12

  • Fluctuating mental status
  • Head trauma
  • History of convulsive seizures (especially convulsive status epilepticus; about one in two patients with coma and previous convulsive status epilepticus have nonconvulsive seizures.1)
  • Ischemic stroke
  • Intraparenchymal hemorrhage
  • Aneurysmal subarachnoid hemorrhage
  • CNS infection
  • Brain tumor
  • Sepsis
  • Recent history of ECMO
  • Hypoxic brain injury of any cause

Continuous EEG monitoring can help critical care physicians properly characterizing “spells” in the ICU “sudden posturing, rigidity, tremors, chewing, agitation, or sudden changes in pulse or blood pressure without an obvious explanation.”12 cEEG can also provide useful information about the level of sedation and can detect clinically silent, but significant neurologic events.12

How to get EEG in the ICU: Rapid EEG Solution

Rapid access to clinical EEGs in ICUs has a significant impact on diagnosis and outcomes in patients with seizures and acute neurological disorders. Despite the obvious need, it is still difficult for most critical care staff to get a rapid EEG in the ICU. The biggest hurdles to EEG in the ICU are a lack of dedicated EEG equipment and full-time staff that can run and read EEG and cEEG studies.

What is Rapid EEG?
  • EEG performed acutely for new onset of patient events and/or seizures
  • Designed to be started within a critical time window with the goal of triaging/treating sooner to prevent brain damage
  • Can be placed quickly by bedside care providers
  • May be in “screening-quality” category, or may be equivalent to standard EEG quality

How Zeto Can Help

Zeto offers a rapid full montage EEG solution that can be easily deployed in the ICU without a dedicated technologist. Zeto might be used for cEEG for up to 4 hours and for routine EEG. Zeto EEG can provide accurate, high-quality, 19-channel medical-grade EEGs in a matter of minutes (average setup time is about 5 minutes) without skin prep or cleanup.

Virtually anyone who works in the ICU can place the Zeto device with minimal training, it’s possible to use cross-trained personnel. The Zeto team trains onsite and offers remote support.

Once the wireless EEG system is placed on the patient’s head, the resulting EEG is available in real time for live monitoring. ICU staff has the additional paid-on option of real-time remote patient monitoring by registered EEG techs and short-notice remote reads by certified neurologists.

Most importantly, Zeto integrates FDA cleared Seizure Detection and continuous Seizure Load monitoring tools from encevis into its User Interface for automatic detection/notification of such critical events, providing more integrated functionality vs. competitors.

With Zeto, it is now possible to obtain medical-grade EEGs in the ICU setting without an on-site EEG staff. Within minutes, our integrated EEG solution notifies staff of continuous seizures enabling physicians to intervene in a timely manner and save lives in critical care settings.

References

1. Kennedy JD, Gerard EE. Continuous EEG monitoring in the intensive care unit. Curr Neurol Neurosci Rep. 2012;12(4):419-428. 10.1007/s11910-012-0289-0

2. Oddo M, Carrera E, Claassen J, Mayer SA, Hirsch LJ. Continuous electroencephalography in the medical intensive care unit. Crit Care Med. 2009;37(6):2051-2056. 10.1097/CCM.0b013e3181a00604

3. Kurtz P, Gaspard N, Wahl AS, et al. Continuous electroencephalography in a surgical intensive care unit. Intensive Care Med. 2014;40(2):228-234. 10.1007/s00134-013-3149-8

4. Drislane FW, Lopez MR, Blum AS, Schomer DL. Detection and treatment of refractory status epilepticus in the intensive care unit. J Clin Neurophysiol. 2008;25(4):181-186. 10.1097/WNP.0b013e31817be70e

5. Pang T, Hirsch LJ. Treatment of Convulsive and Nonconvulsive Status Epilepticus. Curr Treat Options Neurol. 2005;7(4):247-259. 10.1007/s11940-005-0035-x

6. Trevathan E. Ellen R. Grass Lecture: Rapid EEG analysis for intensive care decisions in status epilepticus. Am J Electroneurodiagnostic Technol. 2006;46(1):4-17.

7.  Herman ST, Abend NS, Bleck TP, et al. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol. 2015;32(2):87-95. 10.1097/WNP.0000000000000166

8. Herman ST, Abend NS, Bleck TP, et al. Consensus statement on continuous EEG in critically ill adults and children, part II: personnel, technical specifications, and clinical practice. J Clin Neurophysiol. 2015;32(2):96-108. 10.1097/WNP.0000000000000165

9. Rossetti AO, Hirsch LJ, Drislane FW. Nonconvulsive seizures and nonconvulsive status epilepticus in the neuro ICU should or should not be treated aggressively: A debate. Clin Neurophysiol Pract. 2019;4:170-177. 10.1016/j.cnp.2019.07.001

10. Palmio J, Keränen T, Alapirtti T, et al. Elevated serum neuron-specific enolase in patients with temporal lobe epilepsy: A video–EEG study. Epilepsy research. 2008;81(2-3):155-160.

11. Vespa PM, McArthur DL, Xu Y, et al. Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology. 2010;75(9):792-798. 10.1212/WNL.0b013e3181f07334

12. Hirsch LJ. Continuous EEG monitoring in the intensive care unit: an overview. J Clin Neurophysiol. 2004;21(5):332-340.

13. Sharma, S., Nunes, M., & Alkhachroum, A. (2022). Adult Critical Care Electroencephalography Monitoring for Seizures: A Narrative Review. Frontiers in Neurology13.

14. Brophy, G. M., Bell, R., Claassen, J., Alldredge, B., Bleck, T. P., Glauser, T., … & Vespa, P. M. (2012). Guidelines for the evaluation and management of status epilepticus. Neurocritical care17(1), 3-23.

15. Gavvala, J., Abend, N., LaRoche, S., Hahn, C., Herman, S. T., Claassen, J., … & Critical Care EEG Monitoring Research Consortium (CCEMRC). (2014). Continuous EEG monitoring: a survey of neurophysiologists and neurointensivists. Epilepsia55(11), 1864-1871.

16. Rubinos, C., Alkhachroum, A., Der-Nigoghossian, C., & Claassen, J. (2020, December). Electroencephalogram monitoring in critical care. In Seminars in neurology (Vol. 40, No. 06, pp. 675-680). Thieme Medical Publishers, Inc.