Zeto's wireless EEG machine

Wireless EEG Machine

Zeto to Showcase Technology to Make EEG Brain Monitoring More Accessible for New Providers and in Rural and Underserved Communities at 2022 AAN Annual Meeting

Today, Zeto, Inc. announced its participation in the 2022 American Academy of Neurology Annual Meeting, an event for neurologists and neuroscientists, taking place April 2-7, 2022.

The AAN Annual Meeting strives to promote the highest quality patient-centered neurologic care, assert the value of neurology to policymakers and other major stakeholders, and expand the neurology workforce to meet future needs for patient care.

“We are excited to be back in person for the 2022 AAN Annual Meeting. The past two years put a tremendous burden on many private practices and hospitals. In large parts of the U.S., hiring technologists required to record EEGs has been an everyday challenge due to the pandemic. That makes new providers or providers in rural and traditionally underserved communities struggle to offer crucial EEG tests at their own locations.

“For that very reason, Zeto will showcase our FDA-cleared EEG monitoring technology that enables providers to offer brain monitoring even without traditionally trained EEG technologists. Zeto EEG technology helps save valuable time and resources, while not compromising clinical standards. Neurologists can perform an EEG rapidly, even without an EEG technologist on site. At no upfront costs, and for as low as $65 per patient, providers can record full-montage EEG in under five minutes at the same quality as conventional gel EEG. Included in that per-patient fee are an EEG amplifier, consumables, cloud software with storage, video integration, warranty, training, and a powerful report writing tool. Optional EEG reading services further support clinical decision-making. In the past two years, we saw countless examples of how Zeto technology helped support providers to make EEG more available even under the most challenging circumstances,” said Florian Strelzyk, Chief Sales Officer at Zeto.

According to statistics, one in three patients recovering from Covid-19 may experience neurological or psychological effects from their infections, reflecting a growing consensus that the disease can have lasting effects on the brain.

The AAN Annual Meeting is the largest meeting and exhibition in the world to share common scientific and clinical interests in neurology.

About Zeto

Zeto, Inc. is an award-winning privately held medical technology company located in Santa Clara, CA, focused on transforming the way electroencephalography (EEG) is performed at hospitals and clinics. Zeto’s revolutionary FDA-cleared EEG headset and cloud platform bring the traditional EEG procedure to the 21st century. The company plans to leverage its hardware and software technology to improve noninvasive monitoring of the brain’s electrical activity and achieve better outcomes for neurological conditions such as epilepsy, sleep disorders, autism, stroke and concussion.

To learn more about our products, please visit: www.zetoinc.com or email us at info@zetoinc.com

 

Source: https://www.newswire.com/news/zeto-to-showcase-technology-to-make-eeg-brain-monitoring-more-21675785

The Therapeutic Potential of EEG Neurofeedback in treating Covid-19 Induced Neuropsychiatriatric and Cognitive Symptoms

The Covid-19 pandemic has had negative effects on the health and well-being of many individuals around the world, often leaving persistent decreases in quality of life in the post-acute phase of illness. Studies of survivors across the globe, including the United Kingdom, Spain, the United States, and France found lasting neurological effects from Covid 19in thirty percent or more of study subjects when they were followed up after hospital discharge.¹

How does Covid 19 affect the brain?

In terms of how Covid 19 affects the brain, symptoms not only included fatigue and dyspnea, but also neuropsychiatric maladies, such as post-traumatic stress disorder (PTSD), anxiety, depression, and concentration and sleep abnormalities.¹ A prospective cohort study out of Wuhan, China showed similar results. Fatigue/muscular weakness (63%), followed by sleep disturbance (26%) and anxiety/depression (23%) were the most frequent lingering symptoms. Beyond effects on mood and energy, features of Covid-19 infection show that it can affect the brain and central nervous system, including loss of sense of smell and taste, concentration deficits, and headache.² At its most extreme, symptoms can include encephalopathy and seizure.

Source: Shutterstock

EEG Neurofeedback

EEG neurofeedback is a promising technique to provide clinical benefit to those suffering from neuropsychiatric complaints as an alternative or complementary therapeutic modality to conventional psychopharmacology, which carries the risk of many undesirable side effects.

The International Society for Neuroregulation and Research explains the EEG neurofeedback process. They say, “During training, sensors are placed on the scalp and then connected to sensitive electronics and computer software that detect, amplify, and record specific brain activity. Resulting information is fed back to the trainee virtually instantaneously with the conceptual understanding that changes in the feedback signal indicate whether or not the trainee’s brain activity is within the designated range. Based on this feedback, various principles of learning, and practitioner guidance, changes in brain patterns occur and are associated with positive changes in physical, emotional, and cognitive states.”
A review article by Sharon Niv discusses this potential for a variety of disorders, including ADHD, autism spectrum disorders, substance use, PTSD, depression, sleep disturbance, and learning disabilities.³ Although most of these studies were not well-designed and placebo-controlled, the majority suggested clinical benefit.
A recent study by Ward, Porter, and Wood showed outpatient EEG neurofeedback reduced neuropsychiatric complaints, including hyperactivity, emotional lability, anxiety, and depression symptoms.4 Research by Escolano et al. demonstrated that neurofeedback could be effectively employed to enhance cognitive function (specifically working memory) that is negatively impacted by major depressive disorder (MDD).5 The benefit of neurofeedback in the setting of depression may be augmented by photic stimulation.6

Neurofeedback EEG

Source: Shutterstock

EEG and Covid 19

An article by Kopańska et al. reviewed the most recent research on EEG findings in patients with COVID-19, including 17 publications in their evaluation.2 One pattern they identified was that changes frequently involved the frontal area of the brain, which controls focus and executive function. A nonspecific encephalopathic pattern was commonly found, although this pattern could be distinguished from infectious toxic encephalopathy or post-cardiorespiratory arrest encephalopathy using quantitative EEG (qEEG).7 Epileptic discharges and frank seizures or even status epilepticus were detected in a relatively small number of affected individuals.8 The degree of abnormality was associated with Covid severity and pre-existing neurologic disease.
Abnormal EEG patterns identified in patients with Covid-19 are potential targets for EEG neurofeedback. Luckos, Cielebak, and Kaminski published a case study on the therapeutic potential of this modality specifically for Covid.9 A 48-year-old woman developed neurocognitive deficits described as “brain fog” about a month after contracting Covid-19 infection. Her decline was so severe that she was no longer able to function independently.
EEG neurofeedback coupled with goal-directed cognitive training behavioral training was able to greatly alleviate her symptoms, and she was able to resume work. Others affected by Covid’s lasting neurological effects might similarly benefit.
It seems clear that Covid 19 impacts the brain, and that Covid causes lasting neurological effects. It seems equally clear that EEG neurofeedback may be a big help to those who have had Covid 19.

References

1. Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, Cook JR, Nordvig AS, Shalev D, Sehrawat TS, Ahluwalia N. Post-acute COVID-19 syndrome. Nature medicine. 2021 Apr;27(4):601-15.
2. Kopańska M, Banaś-Ząbczyk A, Łagowska A, Kuduk B, Szczygielski J. Changes in EEG recordings in COVID-19 patients as a basis for more accurate QEEG diagnostics and EEG neurofeedback therapy: a systematic review. Journal of clinical medicine. 2021 Jan;10(6):1300.
3. Niv S. Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences. 2013 Apr 1;54(6):676-86.
4. Ward KP, Porter NA, Wood DS. The effectiveness of neurofeedback in an outpatient setting: A multilevel modeling approach. Research on Social Work Practice. 2019 Nov;29(8):939-48.
5. Escolano C, Navarro-Gil M, Garcia-Campayo J, Congedo M, De Ridder D, Minguez J. A controlled study on the cognitive effect of alpha neurofeedback training in patients with major depressive disorder. Frontiers in behavioral neuroscience. 2014 Sep 2;8:296.
6. Hammond DC. Neurofeedback treatment of depression with the Roshi. Journal of Neurotherapy. 2000 Jun 1;4(2):45-56.
7. Pastor J, Vega-Zelaya L, Martin Abad E. Specific EEG encephalopathy pattern in SARS-CoV-2 patients. Journal of Clinical Medicine. 2020 May;9(5):1545.
8. Antony AR, Haneef Z. Systematic review of EEG findings in 617 patients diagnosed with COVID-19. Seizure. 2020 Dec 1;83:234-41.
9. Luckos M, Cielebak K, Kaminski P. EEG NEUROFEEDBACK IN THE TREATMENT OF COGNITIVE DYSFUNCTIONS AFTER THE INFECTION OF SARS-CoV-2 AND LONG COVID-19. Acta Neuropsychologica. 2021:361-72.

A Guide to EEG Basics (Electroencephalography) & Devices Used

Every machine requires some circuitry or motherboard that controls the machine’s functions and operations. Likewise, humans also possess a complex computing system inside the body: the brain. The brain’s inner workings and connections are mysterious. An intricate system of neurons link together to form the brain’s jelly-like morphology.

Advancements in medical science and inventions have improved our understanding of how the brain works. One such invention was electroencephalography, a method and device used to record and analyze the electrical activity occurring inside the brain.

While the first EEG was performed in 1924, the technology is constantly evolving. Today, modern portable EEG devices are changing the way we look at the brain.

In this EEG guide, you’ll learn what an EEG machine is, what an electroencephalography is, how the EEG system operates, and what the various devices are used for.

What is Electroencephalography (EEG)?

Electroencephalography 1, or EEG, is a procedure used to measure and record the electrical activity of the brain in the form of waves. One can monitor the neurophysiological function of the brain while the subject is performing different tasks. Various electrical abnormalities can also be detected with precision.

As we understand the brain better, our EEG technology and the way we interpret the signals of the brain continue to improve. This has led to new ways of performing EEGs, such as wireless EEG systems that allow us to continue to learn the secrets of the brain.

What is an EEG?

Our brain is composed of billions of interconnected neurons. These neurons work by generating electrical potentials in the form of neuronal impulses which travel through the brain. EEG works on the principle of measuring these electrical potentials/voltages generated inside the brain.

What is an EEG Machine?

An EEG machine measures these electrical potentials by recording the differences in voltage between various points using a pair of electrodes. Then, the recorded data is sent to an amplifier.

The amplified data is eventually digitized and displayed on the monitor of the EEG machine as a sequence of voltage values that fluctuate in time. The resulting EEG waveforms from the EEG machine are interpreted to detect signs of abnormality inside the brain.

Parts of an EEG Machine

Essentially, an EEG machine is made up of the following primary device(s):

  • Electrodes: The electrodes pick up small electrical brainwaves produced by neurons. These are attached to the scalp with a special paste. Modern EEG machines possess a wearable cap with electrodes pre-installed inside the cap.
  • Amplifiers: As the signals travel from the electrodes through the machine, they run through an amplifier that boosts the incoming signal enough to be displayed on the screen.
  • Computer Control Module: The amplified signals are processed by a computer.
  • Display Device: The processed signals are displayed on the screen to be analyzed by the operator. Before the digital monitoring methods became prevalent, waveforms were plotted with a moving pen on rolls of graph paper.3

How is an EEG performed?

An EEG test may be performed either as an outpatient study or as part of your stay in the hospital. Various EEG technology and techniques are used depending on your health condition. Generally, an EEG procedure utilizing EEG technology is done in the following way:

  • The patient is asked to relax by lying on a bed or sitting in a chair.
  • Various electrodes (between 16, 20, or more) are attached to the scalp using a special electrolyte paste, or the patient is fitted with a cap containing the electrodes.
  • The patient is then asked to close their eyes and remain still.
  • Generally, an EEG technologist performs this procedure, which may take from 20 minutes to 2 hours, not including the electrode prepping.
  • Longer brain monitoring requires the patient to be admitted to the hospital.4

Modern technology has helped make this process easier in recent years. Today, portable EEG devices offer maximum convenience without compromising the quality of the results.

For the EEG operator, this brings down prep times (it’s easy to put on and adjust, and there’s no messy glue or wires to clean up), and for the patient, this offers increased comfort (the soft support pads are gentle on the skin). 

Also known as rapid EEGs, these devices make EEG technology much more accessible, allowing more people to benefit from it. The portable EEG machine sends results to the Zeto app, allowing practitioners to access live results from anywhere. 

We’re still working hard to understand the human brain, and many mysteries remain, but with each technological improvement in EEG machines, we take a step closer to solving the puzzle of the human brain. Portable EEG machines allow us to study the brain more efficiently, offering benefits to researchers, practitioners, and patients.

What Does an EEG Measure?

At its most basic, an EEG measures brainwaves. Electrical signals generated by the brain are displayed on the screen in the form of waves that vary in amplitude, phase, and frequency.

Fast Fourier Transform (FFT) and other signal processing techniques convert the incoming signals measured by the EEG  into useful information that can aid diagnosis. Brainwaves are categorized into four main types based on frequency: Infra-low, Delta, Theta, Alpha, Beta, and Gamma.

Each brainwave is associated with particular functions of the brain. The following paragraphs discuss the various important functions of the brain in correlation with the types of brainwaves.

Delta Waves (frequency ranging from 0.5 Hz to 3 Hz)

Delta waves are slow but loud brainwaves (like the deeply penetrating waves of a drum beat). They are generated during dreamless sleep. Delta waves are intermittent with sleep spindles and sharp waves. When delta waves synchronize between distant cortical areas, they often trigger sharp waves that are considered to be relevant for memory consolidation. 6

Theta Waves (frequency ranging from 3 Hz to 7 Hz)

Theta waves mostly occur during REM sleep. They derive from deep subcortical sources, making them mostly undetectable with an EEG machine. The predominant occurrence of theta is pathological. Normal theta waves are known to be involved in learning and memory. In theta state, we experience dreams comprising vivid imageries and intuitions. 7

Alpha Waves (frequency ranging from 7 Hz to 13 Hz)

Alpha waves occur when the person is in a relaxed, lucid, or calm state. These are mostly found in the occipital and posterior regions of the brain. Whenever someone is asked to close his/her eyes and then relax, the brain is disengaged from any complex cognitive tasks or thinking, and alpha waves are induced. 8

Beta Waves (frequency ranging from 14 Hz to about 38 Hz)

Beta waves refer to the alert, attentive, and conscious state of mind. These are of low amplitude and are also associated with motor decisions. Beta waves are further subdivided into:

  • Low-Beta Waves (Beta1, 12-15 Hz): occur while musing
  • Mid-Beta Waves (Beta2, 15-22 Hz): occur while engaging intensely in something or actively figuring something out.
  • High-Beta Waves (Beta3, 22-38 Hz): occur during complex thoughts and integration of new experiences. Also related to severe anxiety or excitement. 9

Gamma Waves (frequency ranging from 38 Hz to 120 Hz)

These are the fastest of all the brainwaves with the highest frequency and smallest amplitude. Because of the small amplitude and high frequency, they are often contaminated by electrical noise or muscle artifacts.

If gamma waves are captured and measured by EEG, they inform us about information processing in the brain.10 The synchrony of gamma waves between different parts of the brain reflects information exchange between those areas. Gamma waves still remain a mystery as these waves orchestrate the synchronized activity of neurons.

  • Low-Gamma Waves (38-60 Hz): Active attentive behavior and cognitive tasks
  • High-Gamma Waves (60-120 Hz): Their function is not quite clear, but the predominant occurrence is regarded as diagnostic of epilepsy.

What Does an EEG Test Diagnose?

EEG technology is currently used to diagnose and help treat brain-related disorders.

  • EEG is the most powerful and preferred diagnostic procedure for epilepsy.13
  • EEG is very helpful in diagnosing sleep disorders such as insomnias, parasomnias, etc.14
  • EEG has valuable diagnostic potential for other neurological conditions such as Stroke, Autism, Depression, and ADHD, to name a few.
  • EEG is turning out to be the tool for the next generation of Brain-Computer Interfaces and Neural Prosthetics
  • EEG can be used to track attention during several activities, to help design strategies to reduce stress and improve focus.15
  • EEG has been introduced as a new tool for Neuromarketing studies to help objectively identify participants’ responses.

And the list is growing…

The Bottom Line

The invention of the EEG system opened a new window of learning about the brain. With the EEG system to guide them, neurologists have been able to successfully treat seizures, epilepsy, sleep disorders, and other neurological issues.

As EEG becomes simpler, easier to acquire and interpret, and wireless, even more can be achieved. With new advancements in electronics, cloud computing, and machine learning, it is just a question of how soon.

The future of EEG is bright. Consequently, the advancements in our understanding of the brain cannot be more exciting. Learn more about wet vs. dry EEG tests here.

References

1. Electroencephalogram (EEG) | Johns Hopkins Medicine. https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/electroencephalogram-eeg.

2. Introduction – Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants – NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK390346/.

3. Wang, C. S. Design of a 32-channel EEG system for brain control interface applications. J. Biomed. Biotechnol. 2012, (2012).

4. Light, G. A. et al. Electroencephalography (EEG) and event-related potentials (ERPs) with human participants. Current Protocols in Neuroscience vol. CHAPTER Unit (2010).

5. Watson, B. O. Cognitive and physiologic impacts of the infraslow oscillation. Frontiers in Systems Neuroscience vol. 12 44 (2018).

6. Harmony, T. The functional significance of delta oscillations in cognitive processing. Frontiers in Integrative Neuroscience vol. 7 (2013).

7. Zhang, H. & Jacobs, J. Traveling theta waves in the human hippocampus. J. Neurosci. 35, 12477-12487 (2015).

8. Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences vol. 16 606-617 (2012).

9. Beta Wave – an overview | ScienceDirect Topics. https://www.sciencedirect.com/topics/medicine-and-dentistry/beta-wave.

10. Gamma Wave – an overview | ScienceDirect Topics. https://www.sciencedirect.com/topics/neuroscience/gamma-wave.

11. Michal T. Kucewicz, Brent M. Berry, Vaclav Kremen, Benjamin H. Brinkmann, Michael R. Sperling, Barbara C. Jobst, Robert E. Gross, Bradley Lega, Sameer A. Sheth, Joel M. Stein, Sandthitsu R. Das, Richard Gorniak, S. Matthew Stead, Daniel S. Rizzuto, Michael J. Kahana, Gregory A. Worrell, Dissecting gamma frequency activity during human memory processing, Brain , Volume 140, Issue 5, May 2017, Pages 1337-1350, https://doi.org/10.1093/brain/awx043

12. Ren, L., Kucewicz, M. T., Cimbalnik, J., Matsumoto, J. Y., Brinkmann, B. H., Hu, W., Marsh, W. R., Meyer, F. B., Stead, S. M., & Worrell, G. A. (2015). Gamma oscillations precede interictal epileptiform spikes in the seizure onset zone. Neurology , 84 (6), 602-608. https://doi.org/10.1212/WNL.0000000000001234

13. Smith, S. J. M. EEG in the diagnosis, classification, and management of patients with epilepsy. Neurology in Practice vol. 76 2-7 (2005).

14. Tan, D. E. B., Tung, R. S., Leong, W. Y. & Than, J. C. M. Sleep disorder detection and identification. in Procedia Engineering vol. 41 289-295 (Elsevier Ltd, 2012).

15. Thompson, T., Steffert, T., Ros, T., Leach, J. & Gruzelier, J. EEG applications for sport and performance. Methods 45 , 279-288 (2008).


Wireless EEG for Fast Prep and Easy Use: Q&A with Aswin Gunasekar, CEO of Zeto

Electroencephalography (EEG) devices are incredibly helpful in diagnosing and monitoring certain brain disorders, such as epilepsy and strokes. However, they are not particularly user-friendly or convenient, with specialized technicians performing time consuming procedures, such as skin preparation, to get patients ready to undergo the procedure. A combination of messy gels and wires also makes for an uncomfortable and inconvenient experience for patients.

Woman wearing Zeto's wireless EEG machine

In response, Zeto Inc., a medtech startup based in California, has developed a new EEG device that sits on the head like a bicycle helmet. The headset does not require gels or pastes to function, and can transmit data wirelessly. The company claims that the new system can reduce setup times from the current 20-30 minutes required with conventional systems to just five minutes, potentially making the Zeto device very useful in emergency situations. Best of all, the headset does not require a specialized technician for setup and use, and so could be quickly applied by nursing staff or other clinicians.    

The device is currently being trialed at Methodist Le Bonheur Healthcare in Memphis, Tennessee, to see how it compares with traditional EEG equipment in a clinical setting.

Here’s a video intro from Zeto Inc. about the company’s technology:

Medgadget had the opportunity to talk to Aswin Gunasekar, Founder and CEO of Zeto Inc., about the technology:

Conn Hastings, MedgadgetPlease give us an overview of conventional EEG devices, and their limitations.

Aswin Gunasekar, Zeto: Conventional EEG devices require a trained EEG technologist to measure the head, mark electrode locations, abrade the skin, and apply paste and electrodes to the scalp, eventually tethering the patient to a box with wires. This procedure consumes time, requires technologists who need to be perpetually on-call, and puts the patients through a needlessly poor experience. The scarcity of EEG technologists makes the problem worse, and even unfeasible in many hospitals, emergency rooms and other outpatient settings. Essential features such as easy data access and remote interpretation remain unavailable for conventional EEG devices.

Zeto's wireless EEG machine

MedgadgetHow does the new device developed by Zeto compare with conventional EEG in terms of speed and ease of use?

Aswin Gunasekar: Zeto’s Instant EEG Platform (zEEG) provides the first FDA cleared zero-prep, wireless, dry electrode headset that can be used to perform a routine or urgent EEG anywhere without the need for a trained expert. The device is quickly and easily placed on the patient’s head much like a bicycle helmet. Data are streamed via a HIPAA compliant cloud platform that provides live viewing, tools for analysis and optional remote interpretation by neurologists. Time to interpretable EEG is typically 5 minutes with built-in positioning as per the international 10-20 EEG system. Total overhead time for set up and patient clean up with the Zeto headset is typically under 10 mins compared to over 45 minutes with conventional EEG.

MedgadgetGiven the current pandemic, how does the Zeto EEG device help with reducing the potential for viral transmission?

Aswin Gunasekar: Due to the convenience and simplicity of Zeto’s EEG technology, PPE and exposure time for healthcare workers is reduced significantly. The headset utilizes single-use, disposable electrodes and an optional liner which reduces contact between the patient and the reusable headset, reducing the risk of contamination. Zeto has not yet performed studies on reducing viral transmission. However, the faster setup, zero patient clean up and the ability to monitor the recording with live video from outside the room helps reduce exposure of staff. 

MedgadgetWhat types of mobile devices are compatible with the Zeto EEG device? Is the mobile interface easy to use?

Aswin Gunasekar: Most laptops, desktops and mobile devices capable of running the latest version of Google Chrome web-browser are compatible with the Zeto EEG device. Users of zEEG devices are provided with web-based access, an EEG study manager, video review, annotation features, time-frequency analysis, report generator, analytics and automated software upgrades. The mobile interface – as well as that of laptops and desktops – is simple, intuitive and easy-to-navigate.

MedgadgetHow are data transmitted and how do you deal with data security?

Aswin Gunasekar: The security of our customer and patient data is of foremost importance to us. Zeto employs Design, Technical, Physical and Compliance controls to ensure the integrity and availability of the data on our platform. Data are transmitted with industry-standard AES encryption on the move and at rest. Data access is controlled through strict authentication and authorization protocols. The Zeto Cloud Platform is compliant to HIPAA rules, FDA 21CFR820 cybersecurity requirements and NIST SP800-53 Cybersecurity controls, and all Zeto personnel are HIPAA trained. 

MedgadgetPlease give us an overview of the current trial of the device at Methodist Le Bonheur Healthcare in Memphis, Tennessee.

Aswin Gunasekar: Methodist Le Bonheur Healthcare is the very first hospital system globally to participate in the ongoing trial that compares the capabilities and benefits of Zeto’s EEG technology against traditional EEGs. The trial conducts 3 phases, namely 1) Inpatient (ICU) EEG for detecting subclinical seizures and status epilepticus, 2) Outpatient EEG with trained EEG technologists and 3) Outpatient EEG with staff who are not certified technologists. The current trial could result in a clinical breakthrough that transforms how we approach EEGs in the future. 

Source – https://www.medgadget.com/2020/09/wireless-eeg-for-reduced-prep-time-and-non-specialist-use-interview-with-aswin-gunasekar-ceo-of-zeto.html